Covariance Estimation for Distributions with 2 + Ε Moments
نویسنده
چکیده
We study the minimal sample size N = N(n) that suffices to estimate the covariance matrix of an n-dimensional distribution by the sample covariance matrix in the operator norm, with an arbitrary fixed accuracy. We establish the optimal bound N = O(n) for every distribution whose k-dimensional marginals have uniformly bounded 2+ε moments outside the sphere of radius O( √ k). In the specific case of log-concave distributions, this result provides an alternative approach to the Kannan-Lovasz-Simonovits problem, which was recently solved by Adamczak, Litvak, Pajor and Tomczak-Jaegermann [1]. Moreover, a lower estimate on the covariance matrix holds under a weaker assumption – uniformly bounded 2 + ε moments of one-dimensional marginals. Our argument consists of randomizing the deterministic spectral sparsification technique of Batson, Spielman and Srivastava [4]. The new randomized method allows one to control the spectral edges of the sample covariance matrix via the Stieltjes transform evaluated at carefully chosen random points.
منابع مشابه
Introducing a New Lifetime Distribution of Power Series Distribution of the Family Gampertz
In this Paper, We propose a new three-parameter lifetime of Power Series distributions of the Family Gampertz with decreasing, increasing, increasing-decreasing and unimodal Shape failure rate. The distribution is a Compound version of of the Gampertz and Zero-truncated Possion distributions, called the Gampertz-Possion distribution (GPD). The density function, the hazard rate function, a gener...
متن کاملA Family of Skew-Slash Distributions and Estimation of its Parameters via an EM Algorithm
Abstract. In this paper, a family of skew-slash distributions is defined and investigated. We define the new family by the scale mixture of a skew-elliptically distributed random variable with the power of a uniform random variable. This family of distributions contains slash-elliptical and skew-slash distributions. We obtain the moments and some distributional properties of the new family of d...
متن کاملN ov 2 01 7 Mixture Models , Robustness , and Sum of Squares Proofs Samuel
We use the Sum of Squares method to develop new efficient algorithms for learning wellseparated mixtures of Gaussians and robust mean estimation, both in high dimensions, that substantially improve upon the statistical guarantees achieved by previous efficient algorithms. Our contributions are: • Mixture models with separated means: We study mixtures of k distributions in d dimensions, where th...
متن کاملEstimation of the covariance structure of heavy-tailed distributions
We propose and analyze a new estimator of the covariance matrix that admits strong theoretical guarantees under weak assumptions on the underlying distribution, such as existence of moments of only low order. While estimation of covariance matrices corresponding to sub-Gaussian distributions is well-understood, much less in known in the case of heavy-tailed data. As K. Balasubramanian and M. Yu...
متن کاملMixture Models, Robustness, and Sum of Squares Proofs
We use the Sum of Squares method to develop new efficient algorithms for learning wellseparated mixtures of Gaussians and robust mean estimation, both in high dimensions, that substantially improve upon the statistical guarantees achieved by previous efficient algorithms. Our contributions are: • Mixture models with separated means: We study mixtures of k distributions in d dimensions, where th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012